Anonymized Research: Parameterized Embodied Action via Modern Coding Agent | Academic Research                                                                                                                                        
       
           
               
                   

EmbodiedCoder: Parameterized Embodied Mobile Manipulation via Modern Coding Model

                                        
Zefu Lin2,3, Rongxu Cui5, Chen Hanning1, Xiangyu Wang1,2,3, Junjia Xu5, Xiaojuan Jin2,3, Chen Wenbo2,3, Hui Zhou6, Lue Fan2,3 ✉, Wenling Li5, Zhaoxiang Zhang1,2,3,4 ✉
                   
1 University of Chinese Academy of Sciences (UCAS)
2 Institute of Automation, Chinese Academy of Sciences (CASIA)
3 New Laboratory of Pattern Recognition (NLPR)
4 State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS)
5 Beihang University
6 Chinese University of Hong Kong
                                   
           
       
   
   
     
       

Video Not Loading? Click a link below to watch:

       

          Leveraging large language models for code-driven geometric object parameterization and trajectory synthesis, the EmbodiedCoder framework enables a training-free approach to robotic manipulation. This system autonomously executes complex, long-horizon tasks in unstructured environments, demonstrating robust generalization to novel objects and scenes.        

     
   
 
 
   
     
       
         

Abstract

         
           

              Recent advances in control robot methods, from end-to-end vision-language-action frameworks to modular systems with predefined primitives, have advanced robots’ ability to follow natural language instructions. Nonetheless, many approaches still struggle to scale to diverse environments, as they often rely on large annotated datasets and offer limited interpretability. In this work, we introduce EmbodiedCoder, a training-free framework for open-world mobile robot manipulation that leverages coding models to directly generate executable robot trajectories. By grounding high-level instructions in code, EmbodiedCoder enables flexible object geometry parameterization and manipulation trajectory synthesis without additional data collection or fine-tuning. This coding-based paradigm provides a transparent and generalizable way to connect perception with manipulation. Experiments on real mobile robots show that EmbodiedCoder achieves robust performance across diverse long-term tasks and generalizes effectively to novel objects and environments. Our results demonstrate an interpretable approach for bridging high-level reasoning and low-level control, moving beyond fixed primitives toward versatile robot intelligence.            

         
       
     
   
 
 
   
         
 
 
   
     
       

Other Demos